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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-Cov2 virus has become the 
greatest health and controversial issue for worldwide nations. It is associated with different clinical manifestations and 
a high mortality rate. Predicting mortality and identifying outcome predictors are crucial for COVID patients who are 
critically ill. Multivariate and machine learning methods may be used for developing prediction models and reduce 
the complexity of clinical phenotypes.

Methods:  Multivariate predictive analysis was applied to 108 out of 250 clinical features, comorbidities, and blood 
markers captured at the admission time from a hospitalized cohort of patients (N = 250) with COVID-19. Inspired 
modification of partial least square (SIMPLS)-based model was developed to predict hospital mortality. Prediction 
accuracy was randomly assigned to training and validation sets. Predictive partition analysis was performed to obtain 
cutting value for either continuous or categorical variables. Latent class analysis (LCA) was carried to cluster the 
patients with COVID-19 to identify low- and high-risk patients. Principal component analysis and LCA were used to 
find a subgroup of survivors that tends to die.

Results:  SIMPLS-based model was able to predict hospital mortality in patients with COVID-19 with moderate pre-
dictive power (Q2 = 0.24) and high accuracy (AUC > 0.85) through separating non-survivors from survivors developed 
using training and validation sets. This model was obtained by the 18 clinical and comorbidities predictors and 3 
blood biochemical markers. Coronary artery disease, diabetes, Altered Mental Status, age > 65, and dementia were the 
topmost differentiating mortality predictors. CRP, prothrombin, and lactate were the most differentiating biochemical 
markers in the mortality prediction model. Clustering analysis identified high- and low-risk patients among COVID-19 
survivors.

Conclusions:  An accurate COVID-19 mortality prediction model among hospitalized patients based on the clinical 
features and comorbidities may play a beneficial role in the clinical setting to better management of patients with 
COVID-19. The current study revealed the application of machine-learning-based approaches to predict hospital mor-
tality in patients with COVID-19 and identification of most important predictors from clinical, comorbidities and blood 
biochemical variables as well as recognizing high- and low-risk COVID-19 survivors.
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Background
The COVID-19 disease has resulted in a substantial cause 
of morbidity and mortality across the world [1]. COVID-
19 disease presents with a wide range of clinical features 
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spanning from no symptoms to multi-organ failure [2]. 
Although SARS-CoV-2 mainly affects the lungs and is 
associated with developed acute respiratory distress 
syndrome (ARDS), it can impact cardiovascular, neu-
rological, renal, and vascular complications associated 
with high mortality [3]. The precise prognostication of 
COVID-19 clinical outcome is more challenging due to 
the high variability in disease severity that could essen-
tially be helpful for effective triage and efficient allocation 
of limited resources (i.e., beds, ventilators). More accu-
rate subclassification of COVID-19 is essential for prog-
nostication and identification of severity [4].

It has been shown that the pathological, physiological, 
and immunological responses do not sufficiently discrim-
inate patients with non-severe and severe form due to the 
high level of complexity of these features [4]. A combi-
nation of clinical features and biochemical markers has 
been studied to identify the clinical subtype of COVID-
19. Data mining and machine learning (ML) approach 
could potentially be applied to such diverse multimodal 
data for the classification of patients with COVID-19 [4]. 
Therefore, AI has been used for the diagnosis of COVID-
19 pneumonia, stratification of patients and developing a 
prediction model of patterns of spread [5]. AI- and ML-
based approach can be used as either diagnostic tool or 
a prognostic model to predict outcome [6]. Many studies 
have characterized the association of major risk factors 
with the COVID mortality such as higher age, cardio-
vascular disease, chronic respiratory disease, diabetes, 
hypertension, smoking history, and obesity [7]. However, 
they could not be strong individual predictors mainly 
through using conventional statistical analysis due to 
high degree of complexity and collinearity among the 
data.

In the present study, we aimed to apply ML-based algo-
rithms to generate a mortality prediction model for hos-
pitalized COVID-19 patients as well as classification of 
patients to verify the low- and high-risk groups.

Methods and materials
Data collection
In a retrospective study, we used clinical data from 400 
patients with a polymerase chain reaction (PCR) test 
confirmed patients with COVID-19. Data were col-
lected from patients admitted at the University of Miami 
Hospital, Miller School of Medicine, Miami, FL, USA, 
since June 2020. A total of 250 variables including bio-
chemical and clinical data were collected at various 
times (hospital admission, ICU admission, hospital dis-
charge). The admission time data were considered as the 
data at presentation. These data including demographic 
variables in addition to comorbidities, patients’ vitals, 
anthropometric measurements, chronic treatments, and 

laboratory works were obtained from the patient’s elec-
tronic records. In the processing dataset, the missing 
values level of each variable were found among the cur-
rent cohort. The maximum level of missing values was 
7% among the variables. Using imputation methods, new 
data were created by replacing all missing values with the 
estimated values using mean imputation. Continuous 
variables were median fold normalized, log-transformed, 
and univariance scaled before statistical analysis.

Definitions of variables
Table 1 summarizes patients’ demographics, clinical vari-
ables, comorbidities, and their association with hospital 
mortality and survival of patients with COVID-19.

In this table, the patient’s level of consciousness, when 
it was available, is shown based on Glasgow Coma Scale 
(GCS). We mentioned the patient’s temperature in Fahr-
enheit. Respiratory rate (RR) indicates the number of 
breaths per minute, and the heart rate (HR) demonstrates 
the number of heart beats per minute. The patients’ sys-
tolic and diastolic blood pressure (BP) is presented in 
millimeters of mercury. The percentage of oxygen-satu-
rated hemoglobin to the total hemoglobin is displayed by 
O2 saturation, and ynO2 shows whether the patient was 
on oxygen during the hospitalization. The percentage of 
the oxygen that the patient inhales is presented by FiO2 
(the fraction of inspired oxygen). O2 flow (lpm) indicates 
the required oxygen flow in liters per minute. Nursing 
home shows whether the patient was in a nursing home 
or long-term care facility before hospitalization. Patient 
delay ≥ 7 is used to define patients who delayed at least 
seven days to seek medical assistance after the onset of 
symptoms.

Smoking and alcohol are used to show the patient’s his-
tory of exposure to these toxins. The patient’s vaccina-
tion status against influenza (flu vaccine) and pneumonia 
(pneumonia vaccine) is included as per medical records 
or informed by the patient at the time of inclusion in the 
study.

Altered Mental Status (AMS) refers to any decline in 
the patient’s mental capacity noted through the physical 
exam. The loss of sense of smell and taste is displayed as 
anosmia and ageusia. We collected data related to the use 
of any chronic treatments or chemotherapy. Home O2 
shows whether the patient was on supplemental oxygen 
therapy at home. We have also determined whether the 
patients are on local (inhaled steroids) or systemic cor-
ticosteroids (prednisone). ACE inhibitors indicate that 
the patient was on chronic treatment with angiotensin-
converting enzyme inhibitors, and ARBs refer to the 
chronic use of the angiotensin ll receptor blockers. To 
evaluate the predictive value of imaging tests, we have 
collected data about radiological findings in the patient’s 
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Table 1  Distribution of patients’ demographics, clinical variables, and comorbidities between hospital mortality and survival of 
patients with COVID-19

Variables Hospitalized death P value

Yes No

1 Male 22 (70.9) 118 (53.8) 0.085

2 Age (years) M ± SD 78.1 ± 10.6 60.58 ± 16.78 < 0.0001*

3 Height (cm) M ± SD 161.19 ± 31.69 167.04 ± 15.89 0.106

4 Weight (lb.) M ± SD 176.93 ± 25.77 180.37 ± 47.41 0.467

5 GCS M ± SD 13.50 ± 3.89 14.80 ± 1.50 0.009*

6 Temperature M ± SD 100.04 ± 1.41 99.31 ± 6.37 0.528

7 Respiratory rate (RR) 27.68 ± 15.23 22.12 ± 6.2 < 0.0001*

8 Heart rate M ± SD 95.52 ± 25.44 93.34 ± 20.91 0.599

9 Blood pressure (systolic) M ± SD 123.58 ± 30.77 130.54 ± 24.15 0.149

10 Blood pressure (diastolic) M ± SD 67.58 ± 19.64 74.63 ± 16.68 0.032

11 O2 saturation M ± SD 93.63 ± 5.81 93.35 ± 5.57 0.118

12 ynO2 M ± SD 0.76 ± 0.43 0.56 ± 0.49 0.058

13 FiO2% M ± SD 81.29 ± 29.71 50.22 ± 59.81 0.042*

14 O2 flow (lpm) M ± SD 23.07 ± 21.79 8.55 ± 14.0 0.002*

15 Nursing home 12 (38.7) 26 (11.9) 0.001*

16 H1N1 21 (67.7) 135 (61.6) 0.295

17 European American 21 (67.7) 126 (57.5) 0.332

18 Hispanic 153 (67.4) 86 (58.1) 0.068

19 African-American 4 (12.9) 57 (26.02) 0.074

20 Shelter/homeless 0 7 (3.19) 0.602

21 Asian 1 (3.2) 3 (1.36) 0.413

22 > one race 2 (6.4) 18 (8.21) 1.00

23 Patient delay ≥ 7 6 (19.35) 54 (24.65) 0.788

24 Smoking 1 (3.2) 16 (7.3) 0.702

25 Alcohol 4 (12.9) 62 (28.31) 0.166

26 Flu vaccine 4 (12.9) 46 (21) 1.00

27 Pneumonia vaccine 5 (16.12) 41 (18.72) 0.491

28 Cough 19 (61.2) 126 (57.5) 0.300

29 Sore throat 2 (6.4) 6 (2.73) 0.207

30 Rhinorrhea 1 (3.2) 9 (4.10) 1.000

31 Sputum 2 (6.4) 21 (9.58) 1.000

32 Chest pain 0 34 (15.52) 0.031*

33 Dyspnea 24 (77.41) 132 (60.27) 0.067

34 Hemoptysis 0 4 (1.82) 1.000

35 Fever 19 (61.2) 136 (62.1) 0.063

36 Chills 6 (19.35) 66 (30.13) 0.500

37 Headache 0 21 (9.58) 0.140

38 Myalgia 6 (19.35) 54 (24.65) 0.816

39 Abdominal pain 2 (6.4) 31 (14.15) 0.545

40 Diarrhea 4 (12.9) 40 (18.26) 0.793

41 Nausea–vomiting 4 (12.9) 34 (15.52) 1.000

42 Altered Mental Status (AMS) 10 (32.25) 19 (8.67) < 0.0001*

43 Anosmia (loss of smell) 0 6 (2.73) 1.000

44 Ageusia (loss of taste) 0 3 (1.36) 1.000

45 Chronic treatment 23 (74.19) 124 (56.62) 0.072

46 On any chemotherapy 3 (9.67) 15 (6.84) 0.464

47 Home O2 5 (16.12) 6 (2.73) 0.006*
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chest X-ray. Consolidation on the imaging refers to the 
existence of dense material in the alveoli and small air-
ways. The presence of excess fluid accumulation in pleu-
ral space is listed as pleural effusion on the imaging, and 
the existence of dense material in the interstitium is men-
tioned as pulmonary infiltrates on the imaging.

The chronic health conditions of participants were col-
lected to determine the impact of comorbidities on the 
outcome. These conditions include diabetes, chronic 
obstructive pulmonary disease (COPD), emphysema, 
pulmonary embolism (PE), bronchiectasis, interstitial 
lung disease (ILD), congestive heart failure (CHF), coro-
nary artery disease (CAD), acute myocardial infarction 
(AMI), atrial fibrillation (AFib), hypertension, peripheral 
vascular disease, stroke, dementia, any stage of chronic 
renal failure (CRF), liver disease, peptic ulcer disease 

(PUD), connective tissue disorder, leukemia, lymphoma, 
dependence on hemodialysis, and asthma.

Statistical analysis
To establish a prediction model, we used the statistically 
inspired modification of partial least square (SIMPLS) 
analysis for the clinical data and blood markers collected 
at admission time. SIMPLS, an algorithm of PLS (a lin-
ear machine learning method) [8, 9], was carried out with 
two training and validation sets. To develop the best pre-
diction model, SIMPLS-based prediction model was built 
using all variables as primary model. SIMPLS predicts 
the outcome response to variables by fitting a regres-
sion model (Y = XB) that is derived using the variables. 
Since all variables were not important to predict out-
come, secondly variable reduction in SIMPLS was done 
to characterize useful predictor in explaining variation 

Table 1  (continued)

Variables Hospitalized death P value

Yes No

48 Inhaled steroid 3 (9.67) 23 (10.50) 1.000

49 Prednisone 3 (9.67) 14 (6.39) 0.442

50 ACE inhibitors 9 (29.03) 32 (14.61) 0.061

51 ARBs 6 (19.35) 27 (12.32) 0.253

52 Statins 12 (38.7) 65 (29.6) 0.290

53 Prior ER visit (on past 12 months) 10 (32.25) 81 (36.98) 1.000

54 Any prior hospitalization 12 (38.7) 83 (37.89) 0.378

55 Consolidation on the imaging 13 (41.93) 34 (15.52) 0.002*

56 Pleural effusion on the imaging 6 (19.35) 25 (11.41) 0.250

57 Pulmonary infiltrates on the imaging 17 (54.83) 103 (47.03) 0.568

58 Asthma 2 (6.4) 28 (12.78) 0.548

59 Pulmonary embolism (PE) 0 8 (3.65) 0.601

60 COPD 4 (12.9) 16 (7.30) 0.273

61 Emphysema 1 (3.2) 4 (1.82) 0.486

62 Bronchiectasis 0 2 (0.91) 1.000

63 CHF 6 (19.35) 8 (3.65) 0.003*

64 CAD 11 (35.48) 14 (6.39) < 0.0001*

65 AMI 6 (19.35) 3 (1.36) < 0.0001*

66 AFib 3 (9.67) 19 (8.67) 0.740

67 Hypertension 26 (83.87) 126 (57.53) 0.002*

68 Peripheral vascular diseases 2 (6.4) 12 (5.47) 0.676

69 Stroke 4 (12.9) 14 (6.39) 0.138

70 Dementia 8 (25.08) 17 (7.76) 0.004*

71 Chronic renal failure (CRF) 6 (19.35) 21 (9.58) 0.107

72 Hemodialysis 3 (9.67) 6 (2.73) 0.079

73 Liver diseases 0 8 (3.65) 0.601

74 Diabetes 21 (67.7) 59 (26.94) < 0.0001*

75 Peptic ulcer disease (PUD) 1 (3.2) 11 (5.02) 1.000

76 Leukemia 1 (3.2) 4 (1.82) 0.473

77 Lymphoma 1 (3.2) 7 (3.19) 1.000
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in the predictor variable as well as their correlation to 
outcome. Variable reduction was applied to remove out 
the factors that were not useful in predicting outcome 
according to the variable important for the projection 
(VIP) value of each variable. VIP values were obtained 
through weighted sum of squares of the weights using 
SIMPLS analysis [10]. Thus, the contribution of variables 
in the SIMPLS models was assessed using VIP score. 
Based on the general agreement, the variables with the 
VIP values more than 1.0 were considered as important 
predictors [11]. The variables with lack of predictive abil-
ity (VIP < 1.0) were removed from the basic prediction 
model.

The prediction model was created using the most dif-
ferentiating clinical and biochemical variables (VIP > 1.0). 
The validation set automatically and randomly was cre-
ated including 35% of out 250 hospitalized patients. In 
the absence of external validation cohort, splitting study 
cohort into training and validation sets is most known 
approach for internal validation of multivariate and 
machine-learning-based prediction mode.

SIMPLS was performed using the leave-one-out 
method of cross-validation (CV). The CV method is 
also known as internal validation. SIMPLS analysis was 
assessed using Q2, the goodness for predictability, and 
R2Y, the goodness of variability. The best model was 
selected based on the number of factors for which Q2 

Table 2  Distribution of patients’ laboratory variables between hospital mortality and survival of patients with COVID-19

Variables Hospitalized death P value Normal range

Yes No

Leukocytes (103/µL) 11.75 ± 7.69 7.73 ± 4.55 < 0.0001* 4.5–11

Neutrophils (103/µL) 13.34 ± 14.92 8.59 ± 13.59 0.074 2.5–6

Lymphocytes (103/µL) 2.32 ± 5.16 8.59 ± 13.59 0.577 1–4

Eosinophil (103/µL) 0.35 ± 1.38 0.07 ± 0.18 0.006* 0.05–0.3

Hemoglobin (g/dL) 12 ± .2.36 12.81 ± 9.23 0.627 13.5–17.5

Hematocrit (%) 37.24 ± 7.47 37.38 ± 7.34 0.921 36–50

Platelets (103/µL) 210 ± 138.88 227.40 ± 110.23 0.428 200–500

ESR (mm/hr) 47.75 ± .35.47 45.31 ± 29.39 0.801 0–29

BUN (mg/dL) 39.36 ± 22.97 21.24 ± 19.55 < 0.0001* 6–24

Creatinine (mg/dL) 2.23 ± 2.08 1.59 ± 2.20 0.129 0.74–1.35

Na (mEq/L) 139.81 ± 9.02 137.05 ± 6.06 0.028* 135–145

K (mmol/L) 4.57 ± 1.32 4.21 ± 0.66 0.017* 3.6–5.2

Ferritin (ng/mL) 2292 ± 3600 1060 ± 1742 0.006* 20–250

CRP (mg/dL) 13.11 ± 9.47 10.85 ± 11.50 0.326 0.3–1.0

PCT (ng/mL) 3.42 ± 7.00 3.44 ± 18.46 0.980 < 0.5

Lactate (mmol/L) 48.84 ± 172.95 5.42 ± 34.24 0.003* 0.5–2.2

Troponin (ng/mL) 105.81 ± 448.26 0.02 ± 0.03 0.010* < 0.04

CK (U/L) 438.37 ± 567.66 242.80 ± 452.35 0.087 22–198

BNP (ρg/mL) 4307.76 ± 5997.9 3098.26 ± 3450.4 0.635 < 300

LDH (U/L) 606.00 ± 468.67 393.26 ± 224.11 < 0.0001* 140–280

Fibrinogen (mg/dL) 656.00 ± 153.09 538.83 ± 165.68 0.288 200–400

ALT (U/L) 107.38 ± 290.70 55.41 ± 85.80 0.048* 7–55

AST (U/L) 258.66 ± 983.07 59.26 ± 70.67 0.005* 5–40

Albumin (g/dL) 3.19 ± 0.77 3.62 ± 0.55 < 0.0001* 3.4–5.4

D-dimer (µg/mL) 5.35 ± 6.25 4.85 ± 25.40 0.936 0.05–6.5

Bilirubin (mg/dL) 0.56 ± 0.33 0.66 ± 1.09 0.625 0.3

Prothrombin (Second) 15.70 ± 2.76 14.77 ± 2.58 0.160 11–13.5

APTT (Second) 59.53 ± 48.96 36.70 ± 19.17 < 0.0001* 30–40

pH 7.34 ± 0.11 7.30 ± 0.49 0.684 7.35–4.45

PaCo2 (mm Hg) 36.28 ± 17.08 35.68 ± 12.13 0.841 38–42

FiO2_lab 75.20 ± 29.90 39.04 ± 25.53 < 0.0001*

Bicarbonate (mEq/L) 21.18 ± 4 22.79 ± 29.90 0.140 23–30
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was larger and had not started decreasing with the high-
est R2Y. The range of R2 and Q2 varies between 0 and 1, 
the higher level showing higher predictive accuracy. 
Depending on data, the thresholds for the model perfor-
mance change, generally R2 greater than 0.67 and 0.33, 
are considered as high and moderate predictive accuracy, 
respectively. Although Q2 value greater than zero shows 
the model is predictive, Q2 value with a range 0.2–0.4 
is considered as a model with moderate predictability. 
Close R2 and Q2 show a lack of overfitting and the SIM-
PLS model works independently of the specific data [12, 
13].

The Q2 and R2Y were computed using the training 
set and were verified using the validation set that make 
the model more realistic. Validation set was randomly 
selected from study cohort in a blinded approach.

Also, the partition analysis was used to creating a deci-
sion tree of the partition of data according to a relation-
ship between the outcome and predictors. The data were 
partitioned into training and validation sets. The parti-
tion algorithm was to search all possible splits of predic-
tors to best predict the response. The most differentiating 
clinical predictors obtained by SIMPLS were used for the 
partition analysis. AUC were obtained for both training 
and validation sets through the partition analysis based 

on the most important variables that were selected strong 
predictors in the SIMPLS-based prediction model.

We also used the partition analysis to obtain cut-
ting value for either continuous or categorical (nominal 
or ordinal) variables such as age, heart rate, respiratory 
rate, and BMI. PCA and clustering were performed to 
identify subgroups particularly survivor subgroups. PCA 
was carried out in two steps. The first step was based on 
all variables to find outliers and trends and the step was 
using the most differentiating predictors obtained by 
SIMPLS. PCA and clustering were to help to find a sub-
group of survivors that tends to hospital death. Latent 
class analysis (LCA) was carried to cluster the patients 
with COVID-19. Clustering was to help to identify the 
high-risk patients for dying. All paraclinical variables 
were normalized and transformed to use independently 
or in combination with clinical data for predicting hospi-
tal mortality.

Results
Patients’ characteristics
A total of 250 hospitalized patients with RT-PCR con-
firmed COVID-19 enrolled in the study, and 31 (12.4%) 
patients died in hospital. Table 1 shows the demographic 
characteristics, comorbidities, and outcomes of patients 
with COVID-19 that were admitted to MICU. The table 
shows, age, respiratory rate, FiO2%, O2 flow (lpm), having 
been in nursing home, chest pain, Altered Mental Status 
(AMS), having been on home supplemental O2 therapy, 
pulmonary consolidation on the imaging, chronic heart 
failure (CHF), coronary artery disease (CAD), acute myo-
cardial infarction (AMI), dementia, hypertension, and 
diabetes mellitus were significantly different between 
the two cohorts. Table  2 shows the laboratory variables 
among survived and died patients.

Predicting hospital mortality using clinical and paraclinical 
data
The multivariate approach showed that patients’ demo-
graphics, clinical variables, comorbidities, and biochemi-
cal markers can be used for predicting hospital mortality 
outcomes. SIMPLS analysis was carried using most dif-
ferentiating variables (VIP > 1.0) [11] to establish the pre-
diction model. The prediction model was developed on 
172 patients in the training set and 78 patients in the 
validation set. Two-factor-based SIMPLS models had 
moderate predictability (Q2 = 0.24) with the variability 
of R2 = 0.37 using a total of 21 variables that contributed 
to the prediction models. Table  3 also shows that CAD 
is the most important variable associated with mortality 
followed by diabetes mellitus, AMS, and age > 65.

Further, the coefficient plot revealed that the age > 65, 
nursing home, headache, dyspnea, AMS, consolidation, 

Table 3  Importance values (VIP) of 21 most differentiation 
among 108 variables used in the primary model

Variables VIP

1 CAD 2.1045

2 Diabetes 1.9098

3 Age > 65 1.7433

4 AMS 1.6922

5 Dementia 1.6309

6 Nursing home 1.5545

7 Q2 saturation < 88 1.5252

8 yno2 1.4903

9 Consolidation 1.4654

10 Hypertension 1.4226

11 Atrial fibrillation 1.3789

12 Alcohol 1.2563

13 Chest pain 1.1566

14 Peripheral vascular disease 1.1133

15 Prothrombin 1.0855

16 Stroke 1.0665

17 Headache 1.0412

18 Dyspnea 1.0212

19 CRP 1.0125

20 Lactate 1.0012

21 Smoking 1.0011
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O2 saturation < 88, yno2, CAD, diabetes, alcohol, hyper-
tension, stroke, dementia, prothrombin, and CRP were 
positively correlated with mortality among patients with 
COVID-19. On the other hand, chest pain, smoking, 
hypertension, atrial fibrillation, and peripheral vascular 
disease were negatively correlated with mortality. Scat-
terplot using two factors is characterized by adequately 
discriminating between patients who died and those who 
survived from COVID-19 in hospital ensuring accurate 
prediction of clinical variables (Fig. 1).

Further multivariate correlation analysis (Table  3) 
showed that CAD, diabetes, hypertension, AMS, demen-
tia, stroke, atrial fibrillation, O2 saturation < 88, yno2, 
nursing home, and age > 65 are correlated together and 
mortality. Also, O2 saturation < 88, lactate, dyspnea, con-
solidation in chest images, AMS, respiratory rate > 20 
and yNO2 were correlated together. Age > 65, dementia, 
hypertension, and nursing home were closely intercor-
related. Also, the correlation analysis showed that alco-
hol and headache had a more negative correlation with 

most variables such as nursing home, diabetes, dementia, 
hypertension, CAD, and AMS. Only prothrombin and 
CRP were correlated only together, and lactate was corre-
lated with O2 saturation < 88, yno2 and atrial fibrillation 
(Table  3). Predictive partition analysis verified that the 
above-mentioned most differentiating clinical and blood 
maker variables are strong predictors to partition hospi-
tal mortality and survivors according to AUC = 0.95 and 
AUC = 0.91 for the training and validation sets, respec-
tively (Fig.  2). The sensitivity, specificity, and accuracy 
were 80%, 92%, and 90% for the training set and 75%, 
90%, and 87% for the validation set, respectively.

Decision tree-based partition analysis revealed that 
age < 65 and either absence or presence of diabetes were 
involved to partition at least 50% of survivors. Also, 
age > 65, the O2 saturation condition, chest pain, and 
CAD had the highest portion for the partitioning of hos-
pital death from survivors (Fig. 3).

Fig. 1  SIMPLS-based scatter plot shows a good separation between hospital mortality of patients with COVID-19 from survivors. The figure 
illustrates only the training set-based scatter plot
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Identification of high‑risk patients with COVID‑19
Further investigations using PCA and LCA showed that 
patients with COVID-19 can be clustered to identify the 
high-risk patients (Fig. 4) based on the clinical data.

LCA was performed using most differentiating clinical 
variables obtained by SIMPLS prediction models. LCA-
based clustering revealed three main clusters among the 
patients with COVID-19 cohorts (survivors and non-
survivors). LCA-based clustering revealed that clus-
ter 3 and cluster 2 had a 38% and 12.5% mortality rate. 
Cluster 1 was with the lowest rate of mortality (0–1.3%) 
compared to clusters 2 and 3. All 3 clusters were well 
depicted through a PCA plot that can verify the clus-
tering using two unsupervised methods. Table  4 shows 
that although variables had different contributions to 
each cluster, several variables markedly impact cluster-
ing. Hence, age < 65, lack of hypertension, lack of dia-
betes, alcohol consumption, and headache were highly 
correlated with cluster 1 and with a lower rate of mor-
tality. On the other hand, age > 65, nursing home, AMS, 
stroke, atrial fibrillation, CAD, and dementia were the 
most important variables correlated with cluster 3; chest 
pain and dyspnea were the most important variables 
correlated with cluster 2. Also, hypertension, yno2, con-
solidation, O2 saturation < 88, and diabetes were vari-
ables that had a similarly high probability for clusters 2 
and 3. This result showed that nursing home, dementia, 

O2 saturation < 88, diabetes, hypertension, age > 65 are 
risk factors for COVID-19 survivors in clusters 2 and 3. 
Table 4 shows the probability of all 18 variables for each 
cluster in the analysis. Multivariate correlation analysis of 
19 most differentiating clinical and comorbidities predic-
tor was obtained by SIMPLS. The correlation values > 0.2 
are in red with highlighted cells (Table 5).

Further analysis showed that three clusters are sepa-
rated from each other using a very good predictive 
(Q2 = 0.69) with high variability (R2Y = 0.81) SIMPLS-
based model using most differentiating variables (Fig. 5).

More investigations revealed that the prognosis of 
hospital mortality was poorly predicted using paraclini-
cal data such as blood cell characteristics (i.e., numbers 
of leukocytes, neutrophils, lymphocytes, eosinophils, 
hemoglobin) and biochemical measures (i.e., BUN, cre-
atine, sodium, CRP, procalcitonin [PCT], lactate, etc.) 
compared to clinical data and comorbidities.

Discussion
In the current study, machine learning algorithms were 
applied to predict hospital mortality using a prediction 
model based on the demographic, clinical predictors, 
comorbidities, and biochemical markers of patients with 
COVID-19. The two-component SIMPLS-based predic-
tion model had moderate predictive power Q2 = 0.24 to 
predict hospital mortality. The prediction model was 

Fig. 2  AUC for the separation of hospital mortality and survivors from COVID-19
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associated with high accuracy (AUC score of 0.91–0.95) 
using training and validation sets of the patient cohort. 
The prediction model was developed based on the 18 
clinical and comorbidities, and 3 paraclinical biochemical 
markers uncovering most differentiating predictors that 
some have not been recognized through conventional 
statistical methods. Hence, CAD showed the highest 
predictive importance for in-hospital death, followed by 
diabetes, age > 65, Altered Mental Status, dementia, and 
O2 saturation < 88%. Also, LCA clustering was success-
ful to identify high- and low-risk clusters in COVID-19 
survivors. The clusters were discriminated against based 
on the high predictive power model Q2 = 0.69. Age < 65, 
lack of hypertension, and lack of diabetes were highly 
correlated with a lower rate of mortality among survivors 
while residing in the nursing home, age > 65, AMS, stroke, 
atrial fibrillation, CAD, and dementia were risk factors 
for in-hospital mortality in COVID-19 survivors. Multi-
variate analysis demonstrated that there are some most 
differentiating predictors which are not included in the 

univariate method (Table 1) such as yno2, dyspnea, alco-
hol, O2 saturation, and stroke. Moreover, the multivari-
ate analysis helped to determine the weight of the clinical 
predictors based on their importance in the prediction 
model (VIP) that is considered as the value of multivari-
ate analysis compared to the univariate analysis. On the 
other hand, acute MI, CHF, O2 flow rate (lpm), Fio2, 
and blood pressure were significantly different between 
the two groups which were not selected as most differ-
entiating predictors using SIMPLS. The combination of 
paraclinical data with patient demographics and comor-
bidities significantly improved the prediction of hospital 
mortality compared to when patient demographics and 
comorbidities or paraclinical data were independently 
poor predictors for the prognosis of hospital mortality. 
Lactate, CRP, and prothrombin were the most weighted 
biochemical variables that could be contributed to pre-
dicting hospital mortality.

Several other studies are published on COVID-19 mor-
tality prediction model development. In a large cohort, 

Fig. 3  Predictive partition platform analysis shows the decision tree that predicts the hospital mortality in patients with COVID-19 from survivors. 
Blue square: survivors, red square: hospital mortality
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Yadaw et  al. developed a highly accurate (AUC = 0.91) 
ML-based mortality prediction model, using patient’s 
age, O2 saturation throughout their medical encounter, 
and type of patient encounter (inpatient versus outpa-
tient and telehealth visits) [14]. Age and minimum O2 
saturation during the encounter were the most predic-
tive factors, which is in line with our results. Individu-
als aged 60  years and older represent nearly 85% of all 
deaths, in COVID-19 hot spots across the USA [15]. 
Not surprisingly, the severity of hypoxia at presentation 
has been extensively reported as a significant indicator 
of the severity of illness, specifically in acute respiratory 
distress syndrome, and carries strong justification to be 
an important predictive factor in the clinical course of 
COVID-19 [16, 17]. Although development and valida-
tion datasets were larger in this study, the collected data 

were limited to those routinely collected during hospital 
encounters and did not include the comprehensive list of 
demographics, comorbidities, biochemical tests, imag-
ing, and omics data. Additionally, although they had large 
datasets, the number of dead participants was small. 
Knight et al. conducted a large prospective cohort, evalu-
ating an 8-item scoring system (score range 0–21 points) 
for in-hospital mortality due to COVID-19 [18]. The vari-
ables included age, gender, number of comorbidities, res-
piratory rate, O2 saturation, level of consciousness, urea 
level, and CRP. This scoring system revealed high dis-
crimination for mortality (derivation cohort: AUC 0.79; 
validation cohort: 0.77); however, some potentially rel-
evant comorbidities such as hypertension, previous myo-
cardial infarction, and stroke were not included in data 
collection. Moreover, regarding the 32.2% mortality rate 

Fig. 4  PCA plot illustrates the LCA-based clustering of patients with COVID-19. Clusters 2 and 3 are associated with a higher rate of mortality. Black 
circle: Survivors, red square: Hospital mortality
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and elderly patient population (median age of 73  years 
old), this model could function differently in younger 
patients and/or populations at lower risk of death.

LASSO and multivariate data analysis-based predic-
tion models showed that higher age, coronary heart 
disease (CHD), percentage of lymphocytes (LYM%), 
procalcitonin (PCT), urea, CRP, and D-dimer (DD) 
could be potential risk factors for mortality of COVID. 
These variables could classify the COVID patients into 

low- and high-risk groups using a good prediction model 
(AUC = 0.91)[19].

Considerable heterogenicity exists among COVID-19 
mortality prediction models. Unlike our results which 
showed paraclinical and biochemical data have limited 
predictive value, in the model developed by Zhao et  al. 
(AUC 0.83), lactate dehydrogenase and procalcitonin 
were among the top mortality prediction factors [20], 
and the COVID-AID study showed that renal failure at 
presentation (defined by creatinine > 2 mg/dL), regardless 
of chronicity has a high impact on in-hospital mortality 
in hospitalized COVID-19 patients [21]. Recent studies 
have reported that prothrombin and CRP are associated 
with COIVD severity and mortality [22, 23]. In this study, 
we showed the correlation of decreased O2 and increased 
lactate that may indicate the higher level of the anaero-
bic metabolism [24] in patients with COVID-19 that are 
associated with mortality.

Late April 2020, a systematic review and meta-analysis 
showed a significantly higher rate of hypertension, dia-
betes, cardiovascular disease, and respiratory disease in 
critically ill COVID patients compared to non-critical 
patients [25]. Then, another systematic review and meta-
analysis on risk for predicting mortality of COVID 19 
patients demonstrated that dyspnea, chest tightness, 
hemoptysis, expectoration, and fatigue were the most 
significant clinical variables in association with increased 
risk of COVID-19 mortality. This study also showed sig-
nificant increased leukocyte count and decreased lym-
phocyte count in non-survivors [26]. ML was successfully 
applied to determine COVID-19 severity by predicting 
the need for ICU (AUC = 0.80) and the need for mechan-
ical ventilation (AUC = 0.82) [27]. Random forest analy-
sis showed that PCT, DD, CRP, respiratory rate, SpO2, 
albumin, AST/SGOT, calcium, influenza-like symptoms, 
and ALT/SGPT are the most important variables to pre-
dict the need for ICU. Also, CRP, DD, PCT, SpO2, res-
piratory rate, creatinine, total protein, albumin, calcium, 
and age were the most important variables to predict the 
need for mechanical ventilation [27]. In a similar study, 
SpO2/FiO2, CRP, estimated glomerular filtration rate 
(eGFR), age, Charlson score, lymphocyte count, and PCT 
were the most important variables for the prediction 
COVID severity [28]. LASSO-based prediction model 
showed that lymphocyte percentage, lactic dehydroge-
nase (LDH), neutrophil count, and DD in combination 
with four quantitative CT findings including pneumonia 
percentage in the lateral basal segment of left lower lung, 
the volume of the whole lung with the density of -300 to 
-200 HU, pneumonia volume in both lungs and pneu-
monia volume in the right lung can be most important 
variables to prognosticate critical illness risk in hospital-
ized patients with COVID-19 pneumonia [29]. Age, PCT, 

Table 4  The conditional probabilities for each cluster are shown 
for each response category of 20 variables in the analysis

No and yes values are considered as the absence and presence, respectively, for 
the clinical variables

Variable Category Cluster 1 Cluster 2 Cluster 3

Age > 65 No 0.8791 0.3844 0.0429

Age > 65 Yes 0.1209 0.6156 0.9571

Nursing home No 0.9976 0.9509 0.3191

Nursing home Yes 0.0024 0.0491 0.6809

Smoking No 0.9157 0.9411 0.9255

Smoking Yes 0.0843 0.0589 0.0745

Alcohol No 0.5509 0.7871 0.9453

Alcohol Yes 0.4491 0.2129 0.0547

Chest pain No 0.8947 0.7753 0.996

Chest pain Yes 0.1053 0.2247 0.004

Dyspnea No 0.4492 0.2709 0.5011

Dyspnea Yes 0.5508 0.7291 0.4989

Headache No 0.8459 0.9365 0.9793

Headache Yes 0.1541 0.0635 0.0207

AMS No 0.9954 0.9214 0.5785

AMS Yes 0.0046 0.0786 0.4215

Consolidation No 0.8887 0.7795 0.727

Consolidation Yes 0.1113 0.2205 0.273

O2 saturation < 88 No 0.9979 0.8809 0.855

O2 saturation < 88 Yes 0.0021 0.1191 0.145

yno2 No 0.8128 0.5695 0.5008

yno2 Yes 0.1872 0.4305 0.4992

CAD No 0.9978 0.9125 0.6985

CAD Yes 0.0022 0.0875 0.3015

Atrial fibrillation No 0.9911 0.9019 0.7769

Atrial fibrillation Yes 0.0089 0.0981 0.2231

Hypertension No 0.8206 0.173 0.1622

Hypertension Yes 0.1794 0.827 0.8378

PVD No 0.9977 0.9447 0.8524

PVD Yes 0.0023 0.0553 0.1476

Stroke No 0.9892 0.976 0.6911

Stroke Yes 0.0108 0.024 0.3089

Dementia No 0.9981 0.9984 0.4778

Dementia Yes 0.0019 0.0016 0.5222

Diabetes No 0.9772 0.5565 0.4624

Diabetes Yes 0.0228 0.4435 0.5376
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CRP, LDH, DD, and lymphocytes were top mortality pre-
dictors and PCT, LDH, CRP, O2 saturation, temperature, 
and ferritin were important predictors for the ICU need 
with AUC 89% and 79%, respectively, in a cohort from 
New York [30].

Leon et  al. applied the ML approach to cluster the 
patients with COVID into 3 groups including higher, 
moderate, and low rate of mortality. This study showed 
that the higher and lower AST, ALT, LDH, CRP, and 
number of neutrophils were associated with a higher and 
lower rate of mortality, respectively [31]. The percentages 
of monocytes and lymphocytes were negatively corre-
lated with mortality [31]. Unlike our results, Leon’s study 
showed that age, sex, and comorbidities did not contrib-
ute to the above clustering model [31].

The strengths of our study include assessing a compre-
hensive list of demographic, clinical, and paraclinical var-
iables, at all stages of hospitalization (admission, during 
hospital stay, and hospital discharge), development of an 
internally validated accurately discriminating in-hospital 
mortality prediction model, identification of high-risk 
and low-risk clusters of COVID patients whose health-
care needs are different, and enrollment of PCR-proven 
cases of SARS-CoV2, rather than possible COVID-19 
patients. SIMPLS is considered a suitable multivariate 
method to investigate big and complex datasets that have 
a relatively small sample size and many variables [32]. 
External validation using an external cohort may help 
the results to be more practicable and achievable at any 

time with any cohorts. Current findings in this study may 
improve the precise prognostication of COVID-19 mor-
tality, classification of low and high risk, and identifica-
tion of potential risk factors.

Our study has a few limitations. First, this is a single-
center retrospective study, which might impact the data 
quality and generalizability. Second, although we had 
an acceptable sample size, the subset of dead individu-
als was small (n = 31). A major reason for this concern is 
that the number of predictor parameters considered by 
ML approaches usually exceeds that for regression, even 
when the same set of predictors is applied, especially 
since multiple interaction terms are constantly examined 
and continuous predictors are routinely classified. There-
fore, ML methodologies require “big data” to ensure 
their developed models have minimized overfitting and 
for their potential advantages (i.e., dealing with highly 
nonlinear relations and complex interactions) to reach 
fruition.

Conclusion
In conclusion, we presented an accurate ML-based in-
hospital mortality prediction model for COVID-19, 
which can aid in clinical decision making and resource 
allocation. This model needs to be externally validated in 
larger populations and multicenter settings.

Table 5  Multivariate correlation analysis of 19 most differentiating clinical and comorbidities predictor obtained by SIMPLS

CRP Lactate Prothrombin Age
> 65

Nursing 
Home Smoking Alcohol Chest 

pain Dyspnea Headache AMS Consolida�on
O2 
SAT 
<88

yno2 CAD Atrial 
fibrilla�on Hypertension PVD Stroke Demen�a Diabetes

CRP 1.00 0.06 0.07 -0.09 -0.12 -0.05 -0.04 0.09 0.04 -0.02 -
0.11 -0.04 -0.04 -

0.04 0.02 -0.02 -0.08 0.05 0.00 -0.05 -0.07

Lactate 0.06 1.00 0.01 -0.06 -0.05 0.09 0.00 0.05 0.08 0.03 -
0.04 0.08 0.17 0.13 -

0.04 0.11 0.00 -
0.03 -0.03 -0.04 -0.05

Prothrombin 0.07 0.01 1.00 0.02 0.01 -0.04 -0.20 0.05 0.16 -0.07 0.02 0.00 -0.01 0.08 -
0.04 0.02 -0.03 0.08 -0.03 0.02 0.01

Age > 65
-

0.09 -0.06 0.02 1.00 0.35 -0.05 -0.18 -0.05 -0.05 -0.14 0.23 0.09 0.11 0.14 0.27 0.19 0.38 0.16 0.15 0.30 0.31

Nursing 
Home

-
0.12 -0.05 0.01 0.35 1.00 0.02 -0.21 -0.14 -0.08 -0.09 0.26 0.08 -0.04 0.08 0.24 0.02 0.19 0.10 0.27 0.56 0.15

Smoking
-

0.05 0.09 -0.04 -0.05 0.02 1.00 0.24 0.03 -0.05 -0.08 -
0.05 -0.05 -0.02 -

0.04 0.07 0.08 -0.01 0.01 -0.02 -0.04 0.02

Alcohol
-

0.04 0.00 -0.20 -0.18 -0.21 0.24 1.00 0.05 -0.07 0.08 -
0.16 -0.08 -0.11 0.03 -

0.13 -0.06 -0.15 -
0.06 -0.10 -0.17 -0.13

Chest pain 0.09 0.05 0.05 -0.05 -0.14 0.03 0.05 1.00 0.26 0.00 -
0.11 -0.10 -0.08 0.09 -

0.05 -0.04 0.09 0.01 -0.02 -0.13 0.01

Dyspnea 0.04 0.08 0.16 -0.05 -0.08 -0.05 -0.07 0.26 1.00 0.12 0.03 0.06 0.20 0.30 0.06 0.01 -0.02 0.00 -0.07 -0.10 -0.02

Headache
-

0.02 0.03 -0.07 -0.14 -0.09 -0.08 0.08 0.00 0.12 1.00 -
0.07 -0.04 -0.04 0.05 -

0.10 -0.10 -0.14 -
0.07 -0.09 -0.10 -0.05

AMS
-

0.11 -0.04 0.02 0.23 0.26 -0.05 -0.16 -0.11 0.03 -0.07 1.00 -0.02 0.21 0.23 0.09 0.19 0.12 0.08 0.24 0.34 0.11

Consolida�on
-

0.04 0.08 0.00 0.09 0.08 -0.05 -0.08 -0.10 0.06 -0.04 -
0.02 1.00 0.27 0.09 0.12 0.07 0.12 0.12 -0.06 0.11 0.10

O2 SAT <88
-

0.04 0.17 -0.01 0.11 -0.04 -0.02 -0.11 -0.08 0.20 -0.04 0.21 0.27 1.00 0.24 0.00 -0.04 0.15 0.06 0.03 0.15 0.15

yno2
-

0.04 0.13 0.08 0.14 0.08 -0.04 0.03 0.09 0.30 0.05 0.23 0.09 0.24 1.00 0.10 0.09 0.17 -
0.02 0.05 0.09 0.17

CAD 0.02 -0.04 -0.04 0.27 0.24 0.07 -0.13 -0.05 0.06 -0.10 0.09 0.12 0.00 0.10 1.00 0.23 0.21 0.23 0.01 0.21 0.25
Atrial 

fibrilla�on
-

0.02 0.11 0.02 0.19 0.02 0.08 -0.06 -0.04 0.01 -0.10 0.19 0.07 -0.04 0.09 0.23 1.00 0.08 0.24 0.08 0.13 0.13

Hypertension
-

0.08 0.00 -0.03 0.38 0.19 -0.01 -0.15 0.09 -0.02 -0.14 0.12 0.12 0.15 0.17 0.21 0.08 1.00 0.12 0.13 0.16 0.33

PVD 0.05 -0.03 0.08 0.16 0.10 0.01 -0.06 0.01 0.00 -0.07 0.08 0.12 0.06 -
0.02 0.23 0.24 0.12 1.00 0.07 0.22 0.11

Stroke 0.00 -0.03 -0.03 0.15 0.27 -0.02 -0.10 -0.02 -0.07 -0.09 0.24 -0.06 0.03 0.05 0.01 0.08 0.13 0.07 1.00 0.32 0.08

Demen�a
-

0.05 -0.04 0.02 0.30 0.56 -0.04 -0.17 -0.13 -0.10 -0.10 0.34 0.11 0.15 0.09 0.21 0.13 0.16 0.22 0.32 1.00 0.06

Diabetes
-

0.07 -0.05 0.01 0.31 0.15 0.02 -0.13 0.01 -0.02 -0.05 0.11 0.10 0.15 0.17 0.25 0.13 0.33 0.11 0.08 0.06 1.00

The correlation values > 0.2 are in red with highlighted cells
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